Skip to main content Link Search Menu Expand Document (external link)

QPMSO-Type 4

For type-4 particles, we introduce the concept of “elite particles” into the QPSMO. Elite particles denote the particles with the best position of a swarm. Unlike the rest of the particles in the swarm, the elite particles have the ability to communicate with elite particles from the other swarms and thus learn from their successes/failures.

Attractor $\boldsymbol{\Omega}^{t}_{i,s}$

\[\boldsymbol{\Omega}^{t}_{i,s} = \boldsymbol{\varphi}^{t} _{i,s} \boldsymbol{x}^{t}_{\text{i,s,p-best}} + \begin{cases} \left( 1-\boldsymbol{\varphi}^{t} _{i,s} \right) \boldsymbol{x}^{t}_{\text{me-best}} & \text{if elite particle} \\ \left( 1-\boldsymbol{\varphi}^{t} _{i,s} \right) \boldsymbol{x}^{t}_{\text{ms-best}} & \text{otherwise} \end{cases}\]

where $\boldsymbol{x}^{t}_{\text{me-best}}$ is the mean best position of all elite particles. With the elite particle being defined as the best particle of each swarm, the mean best position is calculated as follows:

\[\boldsymbol{x}^{t}_{\text{me-best}} = \frac{1}{ns} \sum^{ns}_{i=1} \boldsymbol{x}^{t}_{\text{i,s-best}}\]

Characteristic length $\boldsymbol{L}^{t}_i$

\[\boldsymbol{L}^{t}_{i,s} = \begin{cases} 2 \beta \left| \boldsymbol{x}^{t}_{i,s} - \boldsymbol{x}^{t}_{\text{me-best}} \right| & \text{if elite particle} \\ 2 \alpha \left| \boldsymbol{x}^{t}_{i,s} - \boldsymbol{x}^{t}_{\text{ms-best}} \right| & \text{otherwise} \end{cases}\]

Therein, $\alpha$ and $\beta$ are the contraction–expansion (CE) coefficients controlling the convergence speed of the algorithm. In fact, $\alpha$ is the identical to the CE parameter of the single swarm QPSO.

In [4] it has been shown that linearly decreasing $\alpha$ from $1.0$ to $0.5$ during the course of the optimisation leads to a good performance of the algorithm in general.

$\beta$ is a new parameter controlling the contraction-expansion behaviour of the elite particles. To find a suitable range for $\beta$, an experimental study on different functions of the CEC 2017 event is conducted in the subsequent section.

Type-4b Particles

Type-4b particles are a variant of Type-4 particles.

Finding a suitable range for $\beta$

To evaluate a suitable range for the parameter $\beta$ controlling how strong the best particles of each swarm are attracted to the global best particle different functions from the CEC 2017 are optimised using different settings for $\beta$. For more details on the target functions see Section Benchmark. The functions have been evaluated for $N=10$ and $N=30$ dimensions, respectively. The number of function evaluates was limited to $10000 \cdot N$. The optimisation of each function was repeated 100 times (per variation of $\beta$). The mean value of the function values at the end of the iteration and the standard deviation are given in the two following tables for $N=10$ and $N=30$, respectively.

Type-4 Particles

$\beta$ F6 F7 F8 F9 F10 F14 F16 F22 F26 F27
1.0$\rightarrow$0.5 600.0 / 0.0 715.7 / 1.5 805.1 / 1.7 900.0 / 0.0 1167.9 / 110.9 1481.5 / 48.9 1602.4 / 1.9 2280.9 / 33.6 2789.8 / 55.1 3090.2 / 1.4
1.0$\rightarrow$0.2 600.0 / 0.0 715.4 / 1.9 804.7 / 1.5 900.0 / 0.0 1191.1 / 114.8 1490.5 / 49.5 1602.5 / 2.7 2285.7 / 30.1 2790.0 / 50.0 3090.3 / 1.7
0.8$\rightarrow$0.2 600.0 / 0.0 715.2 / 1.8 805.2 / 1.8 900.0 / 0.0 1168.9 / 117.8 1481.1 / 46.7 1603.2 / 4.8 2286.5 / 29.4 2793.0 / 53.4 3090.2 / 1.3
0.8$\rightarrow$0.4 600.0 / 0.0 715.1 / 1.7 804.8 / 1.8 900.0 / 0.0 1156.1 / 112.8 1484.9 / 56.2 1602.3 / 2.1 2291.5 / 23.7 2791.7 / 57.9 3090.5 / 1.6
0.6$\rightarrow$0.2 600.0 / 0.0 715.4 / 1.8 804.8 / 1.5 900.0 / 0.0 1156.3 / 120.5 1482.8 / 54.6 1602.3 / 2.0 2284.9 / 32.9 2799.0 / 33.2 3090.5 / 1.6
0.5$\rightarrow$0.1 600.0 / 0.1 715.3 / 1.7 804.6 / 1.5 900.0 / 0.0 1158.1 / 108.1 1475.3 / 46.2 1602.5 / 2.3 2279.3 / 34.7 2796.0 / 50.8 3090.7 / 1.9
0.5$\rightarrow$0.5 600.0 / 0.0 715.3 / 2.4 804.7 / 1.6 900.0 / 0.0 1176.4 / 103.0 1481.8 / 45.8 1602.4 / 2.5 2291.1 / 24.9 2805.1 / 42.9 3090.7 / 1.6
0.75$\rightarrow$0.75 600.0 / 0.0 715.1 / 1.6 805.0 / 1.8 900.0 / 0.0 1163.2 / 110.4 1482.7 / 50.3 1602.9 / 3.1 2286.1 / 30.2 2792.7 / 58.2 3090.1 / 1.3
0.25$\rightarrow$0.25 600.0 / 0.0 715.4 / 1.9 804.6 / 1.4 900.0 / 0.0 1176.8 / 120.0 1480.0 / 40.9 1602.5 / 2.3 2286.1 / 30.2 2803.5 / 40.1 3090.6 / 1.7

Type-4b Particles

$\beta$ F6 F7 F8 F9 F10 F14 F16 F22 F26 F27
1.0$\rightarrow$0.5 600.0 / 0.0 715.7 / 2.3 805.3 / 1.7 900.0 / 0.0 1164.6 / 104.9 1480.7 / 51.1 1602.7 / 2.8 2285.5 / 30.7 2805.6 / 72.8 3089.8 / 0.8
1.0$\rightarrow$0.2 600.0 / 0.0 715.3 / 1.9 805.1 / 1.7 900.0 / 0.0 1178.5 / 105.2 1483.3 / 53.0 1603.3 / 4.6 2283.8 / 32.0 2809.6 / 57.0 3089.6 / 0.9
0.8$\rightarrow$0.2 600.0 / 0.0 715.2 / 1.7 804.8 / 1.6 900.0 / 0.0 1174.3 / 98.6 1481.5 / 55.9 1602.3 / 2.4 2286.5 / 30.4 2815.5 / 56.4 3089.4** / 0.8
0.8$\rightarrow$0.4 600.0 / 0.0 715.3 / 1.5 805.0 / 1.7 900.0 / 0.0 1188.3 / 126.5 1476.7 / 43.3 1603.1 / 3.1 2284.4 / 30.9 2814.0 / 69.3 3089.6 / 1.0
0.6$\rightarrow$0.2 600.0 / 0.0 715.1/ 1.6 805.1 / 1.6 900.0 / 0.0 1177.9 / 125.9 1483.6 / 42.3 1602.6 / 2.6 2284.7 / 32.2 2821.2 / 49.7 3089.6 / 1.4
0.5$\rightarrow$0.1 600.0 / 0.0 715.3 / 1.9 805.1 / 1.6 900.0 / 0.0 1180.4 / 119.4 1477.4 / 43.3 1603.1 / 3.5 2286.6 / 30.4 2829.7 / 45.2 3089.8 / 1.2
0.5$\rightarrow$0.5 600.0 / 0.0 715.6 / 2.0 805.0 / 1.7 900.0 / 0.0 1173.1 / 118.6 1474.5 / 41.4 1602.3 / 2.2 2291.1 / 25.9 2823.9 / 56.2 3089.8 / 1.3
0.75$\rightarrow$0.75 600.0 / 0.0 715.2 / 1.7 804.8 / 1.8 900.0 / 0.0 1164.4 / 104.1 1480.3 / 45.0 1603.2 / 3.5 2288.5 / 28.0 2824.7 / 56.4 3089.7 / 1.0
0.25$\rightarrow$0.25 600.0 / 0.1 715.4 / 2.0 805.0 / 1.7 900.0 / 0.0 1172.3 / 115.2 1475.7 / 41.2 1602.7 / 2.9 2291.6 / 24.8 2831.2 / 55.8 3090.2 / 1.6

The investigation performed here suggests that the calibration success is insensitive to the choice of the $\beta$ parameter. If at all, only slight advantages can be identified. For example, if a linear decrease of $\beta$, starting at 1 towards 0.5 is chosen, then this corresponds to the recommendation for the choice of the parameter $\alpha$ in [1]. This would allow the substitution $\beta = \alpha$, which allows the extension of the single swarm algorithm to a multi-swarm algorithm based on type-4 particles without the introduction of a new parameter. However, for the sake of generality we keep the parameter $\beta$ and recommend to use the same linear decrease as for the parameter $\alpha$.

Influence of swarm size

  F6 F7 F8 F9 F10
10 600.1 / 0.2 715.5 / 2.3 804.9 / 1.8 900.0 / 0.0 1198.5 / 153.2
20 600.1 / 0.2 715.5 / 2.3 804.9 / 1.8 900.0 / 0.0 1198.5 / 153.2
5 600.1 / 0.2 715.5 / 2.3 804.9 / 1.8 900.0 / 0.0 1198.5 / 153.2
2 600.1 / 0.2 715.5 / 2.3 804.9 / 1.8 900.0 / 0.0 1198.5 / 153.2

References

[1] J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu, ‘Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection’, Evolutionary Computation, vol. 20, no. 3, pp. 349–393, Sep. 2012, doi: 10.1162/EVCO_a_00049.