Skip to content

Brooks & Corey model

The input line for the Brooks & Corey - Mualem1 model takes the following form:

*Relative permeability = Brooks_Corey 
k^w_min, k^a_min, lambda

where \(k^{w}_{min}\) and \(k^{w}_{min}\) are the minimum relative permeability for the pore water and pore air phase, respectively. \(\lambda\) is the Brooks & Corey parameter, see the hydraulic model.

In numgeo a modified form of the equation is implemented2 :

\[\begin{equation*} k^w = (1-k^w_{min}) \left(S^e\right)^{\frac{2+3\lambda}{\lambda}} + k^w_{min} ~~~\mbox{and}~~~ k^a= (1-k^a_{min}) \left(1-S^e\right)^2 + k^a_{min} \left(1-\left(S^e\right)^{\frac{2+\lambda}{\lambda}}\right). \end{equation*}\]

Theory

The contributions to the Jacobian read:

\[\begin{align*} \frac{\partial k^w}{\partial S^e} &= (1-k^w_{min}) \frac{2+3\lambda}{\lambda} \Big(S^e\Big)^{\frac{2+3\lambda}{\lambda} - 1}, \\ \frac{\partial k^a}{\partial S^e} &= (1-k^a_{min}) \left( -2 \left(1-S^e\right) \Big( 1 - \left( S^e \right)^\frac{2+\lambda}{\lambda} \Big) - \frac{2+\lambda}{\lambda} \left(1-S^e\right)^2 \left(S^e\right)^{\frac{2+\lambda}{\lambda} - 1} \right). \end{align*}\]

The development of relative permeability \(k^\beta\) with effective degree of saturation \(S^e\) is presented here:



  1. Yechezkel Mualem. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3):513–522, 1976. Publisher: American Geophysical Union (AGU). doi:10.1029/wr012i003p00513

  2. O. Dury, U. Fischer, and R. Schulin. A comparison of relative nonwetting-phase permeability models. Water Resources Research, 35(5):1481–1493, 1999. Publisher: American Geophysical Union (AGU). doi:10.1029/1999wr900019