Hardening-Soil (HS / HSsmall)
Generalized Hardening-Soil model with stress-dependent stiffness and an optional HSsmall branch for small-strain shear stiffness degradation.
A benchmark simulation of the implementation is available in the Benchmark Manual.
Material Parameters
Keyword: *Mechanical = Hardening-Soil
Provide the following 12 values in the order:
# | Name | Symbol | Unit | Description |
---|---|---|---|---|
1 | Friction angle | \(\varphi\) | deg | Peak friction angle |
2 | Dilatancy angle | \(\psi\) | deg | Peak dilatancy angle. Set to \(0\) for no dilation. |
3 | Effective cohesion | \(c_\mathrm{eff}\) | kPa | Mohr–Coulomb cohesion used in HS strength envelope. |
4 | Secant modulus at 50% strength (ref.) | \(E_{50}^{ref}\) | kPa | Controls initial shear stiffness in drained triaxial at \(p=p_{ref}\). |
5 | Oedometer modulus (ref.) | \(E_{oed}^{ref}\) | kPa | Controls volumetric stiffness in one-dimensional compression at \(p=p_{ref}\). |
6 | Unloading/reloading modulus (ref.) | \(E_{ur}^{ref}\) | kPa | Elastic unloading/reloading modulus at \(p=p_{ref}\). |
7 | Stress dependency exponent | \(m\) | – | Stiffness scaling exponent. |
8 | Poisson ratio (un/reload) | \(\nu_{ur}\) | – | Defines elastic bulk/shear splitting with \(E_{ur}\). |
9 | Small-strain shear modulus (ref.) | \(G_0^{ref}\) | kPa | HSsmall parameter. Set \(0\) to disable HSsmall. |
10 | Shear strain at \(G/G_0=0.7\) | \(\gamma_{0.7}\) | – | HSsmall parameter; \(\gamma_r=\gamma_{0.7}/0.7\). |
11 | Reference pressure | \(p_{ref}\) | kPa | Reference mean effective stress (default \(100\)). |
12 | Water bulk modulus | \(K_w\) | kPa | \(0\) for drained; \(>0\) for ideally undrained in solid formulation meaning that total stresses are used. |
Example block
*Mechanical = Hardening-Soil
38,6,1,105000,105000,315000,0.55,0.2,0,0,100,0
Model-specific output parameters
Key | Name | Symbol / Formula | Unit | Sign / Range | Meaning & Notes |
---|---|---|---|---|---|
VOID_RATIO |
Void ratio | \(e\) | – | \(>0\) | Current void ratio; advanced explicitly from the volumetric strain rate. |
PCAP |
Cap size parameter | \(p_c\) | kPa | \(\ge p_{\min}\) | Controls onset of compressive cap flow; hardens with \(\dot p_c = H_c\,\dot{\varepsilon}_{v,\text{cap}}^p\). |
EPS_PL_VOL |
Accumulated plastic volumetric strain | \(\varepsilon_v^p = \int (\dot{\varepsilon}_{v,\text{dil}}^p + \dot{\varepsilon}_{v,\text{cap}}^p)\,\mathrm{d}t\) | – | Compression positive | Sum of dilatancy- and cap-driven plastic volume change. |
STRESS-PW |
Pore water pressure | \(u\) | kPa | Compression positive | Used only for undrained runs (\(K_w>0\)); total stress \(\boldsymbol{\sigma}=\boldsymbol{\sigma}' - u\,\boldsymbol{\delta}\). |
EPS_PL_DEV |
Accumulated plastic shear strain | \(\varepsilon_q^p\) (triaxial-equivalent plastic shear) | – | \(\ge 0\) | Increases when \(q>q_h(\varepsilon_q^p)\); drives the hyperbola \(q_h\) and the dilatancy rule. |
STRESS-P |
Mean effective stress (magnitude) | \(p=\tfrac{1}{3}\,\mathrm{tr}(-\mathbf{T})\) | kPa | \(\ge 0\) | Mean effective pressure; internal \(\mathbf{T}\) is compression-negative. |
STRESS-Q |
Deviatoric stress invariant | \(q=\sqrt{\tfrac{3}{2}\,\mathbf{S}:\mathbf{S}}\), with \(\mathbf{S}=\mathbf{T}-\tfrac{1}{3}\mathrm{tr}(\mathbf{T})\boldsymbol{\delta}\) | kPa | \(\ge 0\) | Mises-type equivalent shear stress controlling shear hardening. |
GAMMA_EQ |
Equivalent shear strain (HSsmall track) | \(\gamma_{\text{eq}}\) | – | \(\ge 0\) | Running measure for shear strain amplitude used in small-strain modulus reduction (if \(G_0^{\text{ref}}>0\)). |
Optional Parameters
*Optional mechanical parameter
<property 1>, <value 1>...
<property 2>, ...`
A list of currently supported optional parameters is given below:
-
integrator
: Numerical integrator:-
integrator = 1
: Modified-Euler -
integrator = 2
: Explicit Euler with Richards extrapolation of Order 2
Per default, the Explicit Euler with Richards extrapolation method is used (
integrator = 1
). -
-
tol_stress
: Tolerance \(T^\sigma\) for error \(\epsilon^\sigma\) evaluated based on constitutive stress. The solution is accepted if \(\epsilon^\sigma < T^\sigma\). Per default \(T^\sigma = 10^{-4}\). Stress control can be deactivated by setting \(T^\sigma=1\) (not recommended!). -
num_diff
: Method for the numerical differentiation used for the estimation of the material Jacobian (tangent stiffness) \((\partial \boldsymbol{\sigma})/(\partial \boldsymbol{\varepsilon})\):-
num_diff=1
: Forward Euler of \(O(h)\), \(\dfrac{\partial f}{\partial x} \approx \dfrac{f(x_0+\theta)-f(x_0)}{\theta}\) -
num_diff=2
: Central Differences of \(O(h^2)\), \(\dfrac{\partial f}{\partial x} \approx \dfrac{f(x_0+\theta)-f(x_0-\theta)}{2\theta}\)
-
-
perturbation
: The perturbation factor \(f^\theta\) used in the numerical differentiation to evaluate the material tangent stiffness \((\partial \boldsymbol{\sigma})/(\partial \boldsymbol{\varepsilon})\). The perturbation is \(\theta=\text{max}(||\dot{\varepsilon}||)f^\theta\), where \(||\dot{\varepsilon}||\) is the \(L_2\) norm of the strain rate. The default value is \(f^\Theta=10^{-7}\). -
jacobi
: Method to evaluate the Jacobian:-
jacobi = 1
(Default): The material Jacobian is determined at the end of the numerical integration as the tangent at the final stress state. -
jacobi = 2
: The material Jacobian is calculated as the weighted sum of all Jacobians evaluated at the end of each converged Runge-Kutta substep.
-